Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sports Sci ; 42(5): 425-433, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38545865

RESUMEN

In high jump, the thigh and shank rotations mainly induce the effective energy for height (Evert) by directly or indirectly (via joint work) converting horizontal-kinetic energy. Meanwhile, inter-individual differences in Evert may not only be explained by large contributors. Here we show that the Evert components due to relatively small contributor segments share variance with total Evert while those due to the two largest contributor segments do not, by analyzing high jump of 15 male jumpers (personal best: 1.90-2.31 m). The largest Evert components were from the stance-leg thigh and shank (36 ± 7%, 34 ± 7% of total Evert), but each of them did not significantly share variance with total Evert (r2 < 0.12). Meanwhile, each of the thoracic and stance-leg-foot components significantly shared variance with total increase in Evert (r2 > 0.30), despite their relatively small contributions (11 ± 2%, 4 ± 1%). The stance-leg thigh and shank components had a strongly trade-off relationship (r2 = 0.60). We reveal that large contributors to the performance variable do not directly imply by their large contribution that they explain inter-individual differences in motor performance, and vice versa. We provide an example where large contributors to the performance variable are related to individually different strategies for achieving performance rather than to performance itself.


Asunto(s)
Rendimiento Atlético , Humanos , Masculino , Fenómenos Biomecánicos , Rendimiento Atlético/fisiología , Adulto Joven , Pierna/fisiología , Rotación , Ejercicio Pliométrico , Extremidad Inferior/fisiología , Individualidad , Muslo
2.
J Biomech ; 162: 111866, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37976688

RESUMEN

The hip and lumbosacral joint centre (HJC and LSJC) predictions are required to analyse the lumbo-pelvic-hip dynamics during various human motions. Some HJC and LSJC regression equations based on pelvic dimension have been developed; however, the pre-existing methods need to be re-evaluated, and methodological reconsideration may improve the regression methods. Here we show that pre-existing methods produce biased predictions of the LSJC and HJC in 23 male and 24 female Japanese adults, and that the biases in the LSJC differ between sexes, using magnetic resonance imaging (MRI) around the pelvis. Compared with directly measured locations on MRI, the pre-existing regression equations predict LSJC to be more posterior in males and more inferior and posterior in females, and HJC to be more medial in both sexes. The better pre-existing regression equation for LSJC height differs between sexes, with pelvic-width-base better in males and pelvic-depth-base better in females, respectively. We suggest the unsuitability of pre-existing methods to our dataset consisting of Japanese adults and the importance of considering sex differences in regression methods. We propose regression equations to predict HJC and LSJC, considering soft-tissue thickness, sex differences, and a height-directional measure, using least absolute shrinkage and selection operator regression. We validate them using leave-one-out cross-validation (LOOCV). LOOCV shows that our model produces negligible biases and smaller absolute errors than the pre-existing regressions; in particular, the anteroposterior absolute error for LSJC is less than half that of the pre-existing regression. Our regression equation can be a powerful solution for accurate motion analysis.


Asunto(s)
Articulación de la Cadera , Pelvis , Adulto , Masculino , Humanos , Femenino , Fenómenos Biomecánicos , Extremidad Inferior , Imagen por Resonancia Magnética
3.
J Biomech ; 160: 111819, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37783186

RESUMEN

Shot putters throw a heavy shot by "pushing". Pushing involves the coordinated extension of multiple joints and is a common motor task for both upper and lower limbs. In lower limb musculature, proximal-specific development and association with motor performance have been shown in athletes. However, as the upper limb is not mechanically loaded to support the body during daily locomotion, it may develop differently from the lower limb. We investigated the cross-sectional area of the prime movers of the upper limb and upper trunk (pectoralis major, deltoid, triceps brachii, and palmar flexors) in eleven male shot put athletes and fourteen untrained males by obtaining magnetic resonance images and manually tracing the muscles on the images. All target muscles were significantly larger in athletes than non-athletes (p < 0.01), with "huge" effect sizes for the pectoralis major and palmar flexors (d = 2.74, 2.04). All target muscle cross-sectional areas were positively correlated with season best record (r ≥ 0.62, p ≤ 0.04), with a particularly strong correlation for the palmar flexors (r = 0.96). These results suggest that the distal muscles of the upper limb are also expected to develop and are strongly associated with motor performance. This is especially true for the distal upper limb muscles (palmar flexors) in shot putters. These findings provide insight into potential training interventions for athletic performance in forceful upper limb movements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...